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Methods  

Materials synthesis and device preparation 

 

Perovskite sub cell and interconnect: 

All processing steps of each sub cell were either carried out in inert 

atmosphere or high vacuum without any inert breaks. 

The layer sequence of the perovskite p-i-n sub-cell is 

glass/HEL/FA0.8Cs0.2Pb(I0.5Br0.5)3/PC61BM/AZO-NP/ALD-SnOx/ALD-InOx/(Ag). 

As substrate we used ITO-coated glass (17 x 17 mm2) with a photoresist 

patterned to define the active area of 3.14 mm². Tandem cells additionally 

were covered with an illumination mask reducing the active area to 

1.74 mm² to match the certification procedure. After cleaning and a brief 

plasma treatment, PTAA (Sigma Aldrich, 1.35 mg/ml in toluene) or MeO-

2PACz (TCI, 0.1 mM in ethanol) was spin-coated at 6000 rpm for 20 s with a 

ramp of 8 s and annealed at 100°C for 30 min. For perovskite thin-film 

preparation, PbI2 (0,75 M, ultradry from Alpha Aesar), PbBr2 (0.25 M, 

ultradry from Alpha Aesar), CsBr (0.2 M, ultra-dry from Alpha Aesar) and 

FABr (0.8 M, from Greatcell Solar) were dissolved in a 3:7 mixture of N-

Methyl-pyrrolidone (NMP) and Dimethylformamide (DMF) and stirred for at 

least 3 h. In some layers an additional 20 mM PbI2 and 10 mM PbBr2 were 

added. Prior to spin-coating, 33 mM Thiourea (2.5 mg/ml, Sigma Aldrich – 

previously dissolved 100 mg/ml in DMF) was added to the precursor solution. 

The perovskite deposition was performed following a gas quenching 

procedure, as described in earlier work.1 Briefly the solution was spin-coated 

at 3000 rpm for 120 s with a ramp of 10 s. About 15 s after the ramp was 

finished, a 7 bar nitrogen flow (filtered with 5.0 µm PTFE) was directed at 

the substrate to introduce a supersaturated intermediate phase. 

Subsequently, during a 20 min annealing step at 100 °C the final perovskite 

layer forms. PEAI (TCI, 1 mg/ml in isopropanol) was optionally spin-coated 

at 6000 rpm for 30 s with a ramp of 8 s followed by another annealing step 

of 10 min at 100 °C. The optimum PC61BM  layer thickness (see Figures S41) 

has been found to be around ~ 100 nm for the following process parameters: 

PC61BM purchased from Ossila, 50 mg/ml in chlorobenzene, was spin-coated 

with 1000 rpm for 30 s and a ramp of 1 s. Aluminium doped zinc oxide 

nanoparticles (AZO-NP) were processed from a NP-dispersion (Avantama AG, 

N21x, 2.5 wt% in a mixture of alcohols) diluted with isopropanol (1:2) and 
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spin-coated at 4000 rpm for 20 s using a ramp of 6 s. Some AZO layers were 

subsequently annealed at 80 °C, 90 °C or 100 °C for 90 min. For ALD 

deposition the solar cells were transferred into a Beneq TFS-200 reactor 

without inert break. SnOx layers were grown from 

tetrakis(dimethylamino)tin(IV) (TDMA-Sn, Strem) and water. The reactor 

temperature during the deposition was 80 °C, TDMA-Sn was kept in a hot 

source at 45 °C and water in a liquid source at room temperature. Directly 

thereafter, InOx was grown on top of SnOx from Cyclopentadienylindium 

(CpIn, Strem), oxygen (purity 99.999%) and water.2 The reactor 

temperature was 80 °C, CpIn was kept in a hot source at 50 °C, water in a 

liquid source at room temperature.  

Please note that even though our ALD processes are based on water as oxygen 

source, which one might intuitively suspect to be detrimental to the active 

perovskite material, a single dose of H2O in low pressure ALD typically creates an 

environment equivalent to a maximum of 0.1% of relative humidity.3 This is 

significantly lower than the large variety of conditions mentioned in the literature 

to degrade the perovskite.4, 5 

Silver was thermally evaporated in high vacuum (10-7 bar). 

 

Organic sub cell: 

As hole extractor a 15 nm of MoO3 was thermally evaporated in high vacuum 

(10-7 bar). To form the binary BHJ PM6 and Y6 (Solamer Materials, weight 

ratio 1:1.2) were dissolved in chloroform (polymer concentration 7 mg/ml) 

and stirred for 3 h at 50 °C. For ternary BHJ an extra of PC61BM (American 

Dye Source) was added yielding a weight ratio of 1:1.2:0.2. Five minutes 

prior to BHJ processing 0.5 vol% of 1-Chloronaphthalene (Sigma Aldrich) 

was added to the solution. Spin-coating was carried out dynamically (solution 

was dropped on the middle of the rotating substrate) at 2500 rpm for 60 s. 

A subsequent thermal annealing of 100°C was applied followed by thermal 

evaporation of 10 nm C60, 5 nm of BCP, and 100 nm Ag. Optional 100 nm 

MgF2 was evaporated on the glass side to optimize reflectivity of the 

substrate. 

 

Materials and device characterization 

J/V characteristics of solar cells were recorded outside the glovebox under a 

continuous flow of nitrogen using a Keithley 2400 source measurement unit (SMU) 

and a 300 W Newport solar simulator (model 91 160, AM1.5G, 100 mW cm−2) 

calibrated with a certified IEC 60904-9 compliant Si reference cell (Rera Systems). 
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J-V characteristics were recorded with a scanning speed of 500 mV s-1. Stabilized 

power output recording was performed by continuously tracking the maximum 

power point under AM 1.5 illumination. Stabilized VOC was recorded by continuously 

recording voltage without current flow. Long term measurements were conducted 

by continuous MPP tracking in a N2 purged chamber under the illumination of two 

high power LED light sources (NIR: Thorlabs M850LP1 and VIS: Prizmatics 

UHP-T-HCRI or Thorlabs MWWHLP1 with a 630 nm low pass filter) joined together 

by a dichroic mirror. If not stated otherwise, we set the intensity of the light 

source(s) to generate a Jsc comparable to AM 1.5G sunlight illumination. In the case 

of organic single junctions this was achieved by first tuning the intensity of the 

LEDNIR to match the Jsc to that of the tandem under AM1.5G illumination. Then the 

white LEDVIS was added to finally achieve a Jsc corresponding to that of the organic 

single junctions under AM1.5G illumination. For the perovskite single junctions only 

the white LEDVIS was used for illumination. 

For EQE measurements a homebuilt setup containing a chopped tunable light 

source (LOT MSH 150) and a lock-in amplifier (NF electronic instruments 5610B) 

was used. Calibration was performed with a Thorlabs PM100D power meter with a 

S130VC sensor head. For the determination of the EQE of the tandem-cells a 

protocol was followed as published before.6 The sub-cells were therefore 

characterized under accurate bias conditions, to emulate operation under AM1.5G 

illumination. A 780 nm and a 520 nm laser diode (RLDC780-2-3 & RLCW520F, 

Roithner LaserTechnik GmbH) were used as bias light sources for the narrow-gap 

and wide-gap sub-cell, respectively. Transmission spectra were obtained using the 

same tunable light source (not chopped) and power meter. The respective layers 

were deposited on quartz substrates. UV-vis was acquired with a Jasco V-670 

spectrometer. LED spectra were determined using an Ocean Optics spectrometer 

(USB2000+XR1-ES). 

Sheet resistance was determined from measurements following the van-der-Pauw 

geometry in a homebuilt setup using a Keithley 2400 SMU and Keithley 182 

voltmeter. Charge carrier density was determined from Hall measurements using 

the same setup and a magnetic field of 0.75 T. 

SEM images were obtained with a Phillips XL-30 SFEG. Atomic force microscopy 

was conducted with a Bruker Innova system. XRD characterization was conducted 

with Cu-Kα1,2 source (Philips C’Pert Pro MPD). Ellipsometry data of the metal oxide 

layers was acquired with an J.A. Woollam M-2000V ellipsom 

eter and fitted with a cauchy approximation. Optical simulations have been carried 

out using SETFOS (Fluxim AG, Swizerland). Details of the simulation can be found 

in supplementary note 2. 
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Photoelectron spectroscopy was performed in a custom-built ultra-high vacuum 

system, with a base pressure < 10-9 mbar. For the detection of the photoelectrons 

in the UPS and XPS measurements, a hemispherical energy analyzer was used 

(Specs Phoibos 100). The excitation for XPS was done via a non-monochromated 

MgKα source (from VG, hν = 1253.6 eV) and for UPS by a monochromatic He 

source (VUV500, VG Scienta, hν = 21.22 eV). IPES was performed using a Kimball 

electron source (ELG-2) and a solid-state bandpass filter (Omnivac IPES2000). The 

samples were transferred into the measurement system without air exposure and 

were measured within 2 days after preparation.   

The program XPSPEAK Version 4.1. was used to fit the XPS spectra. For the fitting 

of the molybdenum XPS peaks, a Shirley background was subtracted. The 

parameter for full width half max (FWHM) and the Lorentzian to Gaussian ratio 

(L:G) were kept constant for all Mo peaks at 1.22 eV and 23, respectively. The 

distances between the peaks of the different Mo oxidation states were held constant 

with 0.82 eV between Mo5+ and Mo6+ and 0.8 eV between Mo4+ and Mo5+. Regarding 

the additional Mo feature we observed (see Figure S28): in case of MoO3 on top of 

SnOx, the position was at 0.88 eV higher binding energy compared to the Mo6+ 

signal of MoO3, while on InOx this shift was 0.74 eV.  

 

Temperature dependent J/V scans of the recombination layers were conducted with 

an all-in-one solar cell characterization system (PAIOS, Fluxim AG) connected to a 

temperature-controlled cryostat (Linkham). Temperature was varied from room 

temperature upward, down and back to room temperature to ensure 

reproducibility. 

 

Excitation for the PL imaging measurements was performed with a 520 nm CW 

laser (Insaneware) through an optical fibre into an integrating sphere. The intensity 

of the laser was adjusted to a 1 sun equivalent intensity by illuminating a 1 cm2-size 

perovskite solar cell under short-circuit and matching the current density to the 𝐽   

under the sun simulator (e.g. ~16 mA/cm2 at 100 mWcm-2, or 

1x1021 photons m-2s-1 for a perovskite cell with a bandgap of 1.85 eV). A second 

optical fiber was used from the output of the integrating sphere to an Andor 

SR393i-B spectrometer equipped with a silicon CCD camera (DU420A-BR-DD, 

iDus). The system was calibrated by using a halogen lamp with known spectral 

irradiance, which was shone into to integrating sphere. A spectral correction factor 

was established to match the spectral output of the detector to the calibrated 

spectral irradiance of the lamp. The spectral photon density was obtained from the 
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corrected detector signal (spectral irradiance) by division through the photon 

energy (ℎ𝑓), and the photon numbers of the excitation and emission were obtained 

from numerical integration using Matlab. In a last step, three fluorescent test 

samples with high specified PLQY (~70%) supplied from Hamamatsu Photonics 

were measured where the specified value could be accurately reproduced within a 

small relative error of less than 5%.  

  

Grazing incidence wide angle X-ray scattering was performed on a xenocs 

XEUSS 2.0 laboratory beamline using Cu-Kα radiation. The incident angles were 

below 0.5°, while the pressure in the sample chamber during the experiment was 

0.1 bar. XRR measurements were recorded with a GE XRD 3003 TT diffractometer 

in ambient environment, also using Cu-Kα radiation. Synchrotron GIWAXS 

measurements were done at beamline ID10 of the ESRF under nitrogen conditions. 

Beam energy was 22 keV, with incidence angles varying from 0-0.3°. 

 

Scanning transmission electron microscopy (STEM) was performed on a Titan 

Themis microscope operated at 300 kV. Aberration corrected STEM probe has <1 Å 

size and a convergence semi-angle of 24 mrad. High angle annular dark field 

(HAADF) and annular bright field (ABF) images were acquired using collection 

angles of 73-200 and 8-16 mrad respectively. Cross-sectional sample for STEM was 

prepared by a Scios2 focused ion beam (FIB) with a C marker layer to protect the 

sample surface.7 

Energy dispersive X-ray spectroscopy (EDS) spectrum imaging was collected by a 

SuperX detector. The elemental distribution within the ALD layers were examined 

by EDS spectrum imaging, as shown in Figure S22. It is noteworthy that In-L and 

Sn-L X-ray emission peaks overlap, so that the traditional quantification by 

integrating peak intensity over fixed windows leads to interference between the 

SnOx / InOx layers. Therefore, we applied multivariate statistical analysis to 

separate the X-ray emission signals from In and Sn. In this case, we used non-

negative matrix factorization, an algorithm widely applied in microanalysis 

including spectrum imaging of EDS and electron energy loss spectroscopy.8,9  
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Supplementary Note 1. Quantification of the QFLS in partial cell stacks 

To calculate the quasi-Fermi level splitting, we can use the Shockley-Queisser 

equation which links the radiative recombination density of free charges (𝐽 ) with 

the chemical potential per free electron-hole pair (µ) or the quasi-Fermi level 

splitting (QFLS) in the active material.10, 11 

 

 𝐽 𝐽 ,  exp µ/𝑘 𝑇  , (eq. 1) 

 

Here, 𝐽 ,  is the radiative thermal recombination current density in the dark, 𝑘  

the Boltzmann constant and 𝑇 the temperature. We note that equation 1 is a 

simplification of Würfel’s generalized Planck law which is only valid for a QFLS that 

is a few 𝑘 𝑇 smaller that the bandgap 𝜇 𝐸 3𝑘 𝑇.12 If radiative recombination 

comes only from free charges, the radiative recombination current is identical to 

the photoluminescene yield times the elementary charge, that is 𝐽 𝜙 ⋅ 𝑒. 

Moreover, we can define the photoluminescence quantum yield (PLQY) as the ratio 

of radiative to total recombination (𝐽 , ), where the latter is identical to the 

generation current density (𝐽 ) under open-circuit conditions (𝑉 ) 

 

 PLQY
𝐽

𝐽 ,

𝐽
𝐽

 (eq. 2) 

 

Therefore, we can relate the QFLS to the measured PLQY in the following way 

 

 𝜇 𝑘 𝑇 ln PLQY ∗
𝐽

𝐽 ,
 (eq. 3) 

 

We also note that equations 2 and 3 are only valid if the spectral dependence of 

𝐽  is identical to 𝐽 , , meaning recombination goes through the same channels 

regardless of the QFLS.  

In order to quantify the intensity dependence of the QFLS, we consider the following 

points. Firstly, equation 3 shows that the QFLS depends on the temperature. We 

note that we have measured the temperature on the samples during the 

illumination at various light intensities using an infrared sensor. Even at an intensity 

of 5 equivalent suns, which is the upper limit for the results shown in the main text, 

we observe a negligible temperature increase on the sample (~1°C). We attribute 

this to the fast dissipation of heat from the rather small illumination spot area 

(1 cm2) during the measurement. 
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Secondly, the generation current density 𝐽  was approximated with the short-circuit 

current density of the complete solar cell. Similarly, the 𝐽 ,  was estimated by 

integrating the overlap of the external quantum efficiency of the device (EQE) with 

the black body spectrum ϕ  at 300 K over the energy.  

 

 𝐽 , EQE 𝜙  𝑑𝜖   (eq. 4) 
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Supplementary Note 2. Semi-empirical electro-optical simulation 

As input data for the simulation the complex refractive indices (optical constants n 

& k) of all layers in the tandem stack are needed. For all layers except the 

perovskite and organic active layers the data was determined either by optical 

absorption or spectral ellipsometry measurements. To gather data for the 

perovskite and organic layers with different bandgap energies, a different approach 

has been used. At first the optical constants for known perovskite and organic 

absorbers were taken from literature.13, 14 The data was then offset in wavelength 

to construct data for similar materials with varied energy gap. 

To determine the Jsc of the respective tandem cells, a transfer matrix algorithm was 

then used to calculate the charge generation due to photon absorption inside the 

active layers upon illumination of the whole tandem stack with the AM1.5G 

spectrum. This is done for varying layer thicknesses up to 800 nm for the perovskite 

and up to 150 nm for the organic layer. Due to the chosen limits in layer thickness 

we can assume negligible transport losses inside the active layers and thus an 

internal quantum efficiency (IQE) of 100% for both sub-cells, which has also been 

reported to be reasonable.15, 16 The charge generation in each active layer can be 

translated into a maximum possible current density (Jsc,max) of each sub-cell for 

each given thickness combination. 

Describing the tandem device as a serial connection of both sub-cells, the sub-cell 

providing the lower Jsc,max can be considered as current limiting for the entire 

device. As a result the maximum Jsc of the tandem device is obtained by 

determining the highest value of all minimal Jsc,max values for each thickness 

combination. 

 

As discussed in the main text, we assume a loss of 0.5 V in Voc with respect to Eg/q 

for each sub-cell and a FF of the tandem of 80% as a consevative estimate.  The 

results for the more optimistic scenario (FF = 85% and loss in Voc compared to Eg/q 

of 0.4 V) can be seen in Figure S8. 
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Supplementary Note 3. Possible origin of the suppression of halide 

segregation 

 

In recent work it was possible to map parasitic recombination by means of PL-

intensity and link it to the tendency of a perovskite to segregate.18 

It could be shown that segregated, low bandgap domains predominantly form at 

sites that initially show a low photoluminescence intensity. This correlation strongly 

indicates, that halide segregation is linked to charge trapping and concomitant 

parasitic recombination. Considering that we significantly decreased parasitic 

recombination by the introduction of MeO-2PACz as HEL, we believe that this might 

likewise be the origin of the reduced tendency of halide segregation.  A somewhat 

similar observation was presented by Belisle et al., who reported reduced halide 

segregation upon topside defect passivation with trioctylphosphine oxide (TOPO) 

in their MAPb(I0.66Br0.33)3 layers.19 Other passivation agents have also been reported 

to reduce halide segregation.20  

To further analyze halide segregation in our MeO-2PACz/perovskite assembly we 

increased the duration of illumination up to 30 min. We found that halide 

segregation is indeed not entirely eliminated on this time scale, as some PL signal 

indicative for segregated perovskite occurs (Figure S11).  As such, the proper use 

of suitable charge extraction layers, that afford reduced interfacial recombination, 

may be a key to at least slow down detrimental halide segregation. 
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Supplementary Note 4. Determination of the Schottky-barrier at the 

interface of tin oxide and molybdenum oxide.  

 

To assess the rectifying behavior inferred by the SnOx/MoOx interface, we prepared 

devices with a layer sequence ITO/SnOx (20 nm)/MoOx (5 nm)/gold. Forward bias 

refers to a positive bias of the MoOx electrode with respect to the SnOx electrode. 

Typically, rectifying current-voltage characteristics are found (Figure S18 a). We 

have used a standard diode model 

 

𝐼  𝐼  exp
𝑞 𝑉 𝐼𝑅

𝑛𝑘 𝑇
1  

𝑉 𝐼𝑅
𝑅

 

 

to fit the current-voltage characteristics. There, 𝑞 is the elementary charge, 𝑛 is the 

ideality factor, 𝑅  and 𝑅  are the series and shunt resistance, respectively. 𝐼  

denotes the saturation, which can be expressed by 𝐼 𝐴 ∙ 𝐴∗ ∙ 𝑇 exp
  with 𝐴∗ 

being the Richardson constant, 𝜙  denoting the Schottky-barrier height and 𝐴 

stating the area of the device (𝐴  3.14 10 𝑐𝑚 ). According to Crowell 

𝐴∗  
∗

. 22 With the effective mass of tin-oxide 𝑚∗ 0.4  𝑚 ⟶ 𝐴∗ 48  .23 𝐼  

is obtained from a fit of the current-voltage characteristics as shown in Figure S18 b 

and 𝜙  can be derived. The temperature of the diodes has been varied on a 

temperature-controlled stage in the range of 220-370 K (Figure S18 c). At room 

temperature we find 𝜙 0.62 𝑒𝑉, which is in excellent agreement with the results 

of photoelectron spectroscopy. 𝜙  increases from 0.48 eV at 220K to 0.72 eV at 

370K (Figure S18 d). Note, some variation of 𝜙  with temperature has been 

frequently observed in earlier studies of Schottky-barriers in other material 

systems, and they have been attributed to inhomogeneities.24, 25  
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Figure S39/1 certificate for J/V scan and stabilized power output 
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Figure S39/2 certificate for J/V scan and stabilized power output 



51 

 
Figure S39/3 certificate for J/V scan and stabilized power output 
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Figure S39/4 certificate for J/V scan and stabilized power output 
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Figure S39/5 certificate for J/V scan and stabilized power output 
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Figure S39/6 certificate for J/V scan and stabilized power output 
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